# Statistics – Mcnemar Test

Good day friends Worldwide, Lesson 54 from Dr. TJ Gunn in Houston Texas

## What is the McNemar Test?

The McNemar test is a non-parametric test for paired nominal data. It’s used when you are interested in finding a change in proportion for the paired data. For example, you could use this test to analyze retrospective case-control studies, where each treatment is paired with a control. It could also be used to analyze an experiment where two treatments are given to matched pairs. This test is sometimes referred to as **McNemar’s Chi-Square test **because the test statistic has a chi-square distribution.

## Assumptions for the McNemar Test

The three main assumptions for the test are:

- You must have one nominal variable with two categories (i.e. dichotomous variables) and one independent variable with two connected groups.
- The two groups in your the dependent variable must be mutually exclusive. In other words, participants cannot appear in more than one group.
- Your sample must be a random sample.

If your data does not meet these three assumptions, considering running another test for your data like a regular chi-square test.

## Calculating the Test

In order to run a McNemar test, your data should be placed into a 2×2 contingency table, with the cell frequencies equaling the number of pairs. For example, a researcher is testing a new medication and records if the drug worked (“yes”) or did not (“no”). A table is set up with the count of individuals before and after being given the medication. The cell labels a-d are in blue:

Cells b and c are used to calculate the test statistic; these cells are called “discordant.”

The McNemar test formula is:

For the set of data above, we have:

= (100-10)^{2} / (100 + 10)

= 90^{2} / 100

= 73.63

You have an option for calculating the McNemar test using technology:

- This
**online calculator**will calculate the McNemar test using inputs for any 2×2 contingency table that you provide input for.